Spinal cord injury usually results from trauma and can also be the result of diseases or degeneration. Depending on the severity of the injury, SCI can result in severe sensory/motor dysfunction, secondary injuries that could result in tissue damage and cell death, glial scar formation, and impaired regeneration. Apart from the injuries, sufferers of SCI also tend to experience chronic pain that impacts their everyday life.
Since there exists no curative treatment for SCI, establishing an ideal animal model to mirror human injuries is crucial for the identification of the injury mechanism and its effects on the capabilities of its sufferer. The novel SCI Device is modeled after the Weight Drop model, considered as a standard experimental spinal cord contusion injury model designed by Alfred Reginald Allen in 1911 (Koozekanani et al., 1976). Allen’s spinal cord contusion technique was iterated over the years, but Ahdeah Pajoohesh-Ganji and colleagues’ version is a novel yet efficient method for spinal cord contusion.
The SCI device is constructed using a steel impounder inserted into a Teflon base. The impounder is attached to the end of the hollow tube by a horizontal pin to guide the weight and to prevent it from bouncing on impact. The weight is made of Teflon coated stainless steel and is supported by a removable pin which is also used to release the weight. Rod magnet is used for retrieval of the weight after the injury.