Skip to main content
0

Cart

Conductscience Administrator
Conduct Science promotes new generations of tools for science tech transferred from academic institutions including mazes, digital health apps, virtual reality and drones for science. Our news promotes the best new methodologies in science.
×
Conductscience Administrator
Conduct Science promotes new generations of tools for science tech transferred from academic institutions including mazes, digital health apps, virtual reality and drones for science. Our news promotes the best new methodologies in science.
Latest Posts
  • SDS-Polyacrylamide Gel Electrophoresis at Neutral pH (NuPAGE)
  • Games as Research Tools - Featured Image
  • SDS-Polyacrylamide Gel Electrophoresis at Neutral pH (NuPAGE)
  • SDS-Polyacrylamide Gel Electrophoresis at Neutral pH (NuPAGE)

BYOD: Definition and IT Consumerization

Definition: Bring your own device (BYOD) has become a leading approach in healthcare settings. BYOD is a term that refers to the implementation of patients’ own mobile devices in clinical trials and healthcare practice. Note that only in the US, 95% of people own a cell phone, while 75% own a computer. From smartphones to laptops, the BYOD movement embraces the latest innovations in mobiles solutions and technological services to engage participants and clinicians. With increased familiarity and reduced costs, BYOD can facilitate patient-doctor communication and interoperability.

Transition from paper-based to electronic data: There’s no doubt that mobile technology facilitates doctor-patient communication, data collection, and statistical analysis. In fact, according to data, 80% of healthcare workers use tablets in practice, followed by smartphones (42%). With the inevitable transition from paper-based to electronic data, it’s no surprise that a vast majority of experts and sponsors turn to electronic clinical outcome assessments (eCOA) (“9 Key Factors to Evaluate When Considering BYOD”). Although provisioned devices (provided to the subjects) are still widely used to collect electronic data, the use of BYOD in healthcare research and practice is increasing in popularity.

History of BYOD and IT consumerization: Interestingly, BYOD in healthcare settings is not an isolated phenomenon. Since mobile technologies have become an integrated part of people’s lives, the consumerization of information technology (IT) is more than logical. We should mention that the term BYOD was introduced in 2004 when a voice over Internet Protocol (VoIP) service allowed businesses to use their own devices. In 2009, companies started allowing employees to bring and connect their own mobile devices to work. Two years later, BYOD became a leading term in marketing strategies, marking the new consumer enterprise. Note that BYOD can lead to an increase in productivity and a decrease in hardware costs. In addition, research shows that BYOD has numerous benefits across educational settings, as well as other industries.

BYOD in Healthcare Settings: Benefits, Challenges, and Risks

Benefits of BYOD: BYOD is an effective approach in healthcare settings and clinical trials as it allows subjects to provide medical information via their own internet-enabled device. It’s not a secret that recruiting participants and collecting data are among the most challenging aspects of research. With numerous benefits, BYOD is preferred over traditional methods. For instance, users can either access an online platform or download a medical app. The BYOD approach has been implemented even in Phase II and Phase III clinical trials. Some of the major benefits include:

  • Access to data in real-time: Just like with any eCOA and provisioned devices, BYOD ensures access to high-quality medical information. As data collection occurs in real time, 24/7, errors and bias are minimized. As a result, clinicians have access to accurate and valid data.
  • High engagement: Studies show that BYOD boosts engagement and improves compliance. Via SMS, notifications, and emails, doctors can establish a good relationship with their patients and monitor non-compliance. In addition, up-to-date images and visuals can help people track their condition and progress over time.
  • Usability: BYOD means accessibility. Since a vast majority of people own and use a mobile device on a daily basis, experts can reach a wide range of participants. According to data, there are approximately 2.5 billion smartphone users today; and these numbers are increasing. By not carrying an additional device and having optimal familiarity, training costs can only decrease.
  • Better user experience: Customized options improve the user experience. mHealth apps, in particular, are gaining more and more popularity. Interestingly, statistics show that 105,912 apps in the Google Play store and 95,851 apps on the iTunes app store are marketed as health apps (Bol et al., 2018).
  • Productivity: The implementation of BYOD in practice improves clinicians’ productivity. By having access to real-time data, experts can access reports 24/7, which benefits decision-making. In fact, electronic health records (EHRs) that contain data about patient health, demographics, medications, and lab tests, can improve medical workflow.
  • Cost-effective: By implementing the BYOD approach in research, experts can reduce training costs and improve resource efficiency. When a patient brings their own device, there’s no need to store tech gadgets on-site or deal with logistics.
  • Limited site involvement: Automatic updates and online platforms eliminate the need for site involvement and the burden of commuting. What’s more, with the integration of Help buttons, patients can find online support, which can boost participation and outcomes.
  • Advanced features: Mobile devices are equipped with numerous advanced features (such as GPS, barcode scanning, etc.). For instance, GPS options can help researchers monitor a patient’s location and activities in a study in which activity levels are used as an endpoint. BYOD gives access to reports which are available in different formats (e.g., PDF) across different devices (e.g., Android). While clinicians can access biomedical research to provide support, users can connect their devices with other wellness and fitness wearables.

Challenges in the implementation of BYOD: Although BYOD is increasing in popularity, there are a few challenges researchers need to overcome in order to implement BYOD in clinical trials (Marshall, 2014). Researchers need to create a good study design, taking in account patient rapport, data accuracy, and technical aspects (e.g., screen size). Factors, such as lack of a mobile device, demographics, reimbursement, and IT use support, should also be considered. Note that one of the major concerns is data security and HIPAA regulations.

Risks associated with BYOD: Possible risks in clinical research are alarming. Data security and patient privacy are among the major concerns. Since medical data is sensitive, networks must be protected. Virtual sandboxes can be installed on a device to protect apps that deal with medical data. Thus, clinicians won’t breach HIPAA policies, support staff won’t access certain services, and patients will access a hospital’s patient portal only for relevant information.

BYOD in Healthcare Practice

BYOD in healthcare practice and aspects to consider: With its numerous benefits, BYOD is becoming one of the most effective approaches in research. When implementing BYOD in practice, clinicians and IT specialists should consider the following aspects in order to overcome challenges and possible risks (“9 Key Factors to Evaluate When Considering BYOD”):

  • App-based and web-based BYOD: Experts must decide on either an app-based or web-based BYOD. mHealth apps, as stated above, are increasing in popularity. They allow patients to complete a wide variety of PRO’s, including diaries, reports, and reminders. App-based BYOD can benefit populations that use smartphones on a daily basis, as well as the administration of simple questionnaires. Note that unexpected events (e.g., changing phones) should be considered. Web-based BYOD, on the other hand, allows patients to enter data through a web browser (e.g., Chrome) via their own devices (e.g., PC). They are effective in Phase IV studies and in a large number of patients. Note that web-based questionnaires can automatically resize according to the screen size of any patient’s mobile device.
  • Usability and availability: BYOD can improve usability. Nevertheless, although some patients prefer BYOD over provisioned devices, experts should consider patients who need additional training or have privacy concerns. Note that with the increasing range of mobile devices on the market, staff may also need additional training to provide support – regarding OS, brands, and study schedules. Also, although more and more people use technology on a daily basis, researchers need to make sure that enrollment is not biased by mobile device ownership (e.g., age and location). In fact, experts can employ a combined approach, and provide a provisioned device to subjects without a personal device. Note that to