x
[quotes_form]
care and maintenance of laboratory equipment

Comprehensive Pipette Guide

Need Pipettes for your Lab?

As an Amazon Associate Conductscience Inc earns revenue from qualifying purchases

The modern pipette has had a colorful history as a standard tool in the scientist’s arsenal. What began as the usage of straw, one’s mouth, and the scientific principles of suction is now one of the most technologically-evolved yet extremely straightforward devices in the modern laboratory.

Commonly used in genetic research, chemistry, microbiology, and pharmacological testing; pipettes and micropipettes are glass or plastic tubes used to measure, transfer, and deliver substances of accurate volumes. Most pipettes function by creating a vacuum above the space that the liquid shall fill and then control the uptake of the liquid by releasing this vacuum, suctioning the liquid upwards. Simple enough as this may sound, pipettes have come a long way–let’s look at its evolution through an exhaustive list of products that are widely used today.

The Pasteur Pipette

Aside from his more popular invention of the process of pasteurization, we also have Louis Pasteur to thank for the first pipette ever invented. As the founder of medical microbiology and the proponent of Germ Theory, it was then important for Pasteur and his experiments that things be kept clean and germ-free: hence, the invention of the first pipette. The Pasteur pipette, which are the familiar eye droppers and chemical droppers that we still encounter in everyday use, was then merely designed to prevent contamination in transferring small amounts of liquids. The addition of rubber teats at the end of long, thin, glass tubes made aspirating and dispensing of liquids a quick and easy affair. Today, these pipettes are used for the transfer of rough, uncalibrated volumes of liquids of up to 2.5 milliliters.

How is it used?

Pinch the rubber teat of the Pasteur pipette with thumb and forefinger, and immerse the tip of the pipette on the surface of the liquid. Then, slowly release pressure on the rubber teat and wait for the liquid to go up. Once pressure is released, and the proper amount of liquid is aspirated, bring the full Pasteur pipette to the receiving container and pinch the rubber teat again to dispense the liquid on the side of the container’s wall.

The Transfer Pipette

Pasteur’s glass pipettes were a 19th-century hit, but problems arose from the fragility of its material. The invention of plastics in the 1940s, therefore, paved the way for a modification to the original pipette design–plastic Pasteur pipettes, also called transfer pipettes, were single pieces of molded plastic manufactured using the blow-molding process on low-density polyethylene (LDPE). Both the stem and bulb are part of the single piece of plastic, in place of the rubber attachment in glass pipettes. Today, these disposable transfer pipettes are made in a variety of sizes and shapes, and some include graduation marks for approximate volume calibrations. Note, however, that though transfer pipettes may be perfect for use with aqueous solutions, organic solvents such as acetone may dissolve the plastic material.

How is it used?

Transfer pipettes use a similar procedure as with the usage of the Pasteur pipette, but instead of a rubber teat, the plastic bulb is pinched.

The high-end and complex pipette varieties that offer more accuracy and precision than Pasteur and transfer pipettes emphasize on the other aspect of pipetting, aside from the transfer and delivery of liquids–measurement. And, though considered a reliable high-precision instrument, the pipette does not achieve accuracy and precision on its own. A tool is only as good as its user, and, in the laboratory context, the wielder of the pipette must be well-prepared and knowledgeable with common pipetting techniques to make full use of its features. More importantly, scientists are expected to make informed decisions when selecting which pipette to use. Which pipette is the right pipette? How are they used? Let’s look at our list again.

The Volumetric Pipette

Volumetric pipettes resemble thin rolling pins with large bellies, blunt on one end and tapered on the tip. Typically, these pipettes are used to deliver single, specific volumes between 1 and 100 milliliters, at which they are calibrated. These glass pipettes offer more accuracy than Pasteur and transfer pipettes, emphasizing on the other aspect of pipetting, aside from the transfer and delivery of liquids–measurement. By having the middle bulge where the bulk of the liquid is stored, and the single volume marker at the thin portion, errors in accuracy are extremely lessened. The narrow diameter of the thin portion makes errors more obvious and easier to point out.

With these types of pipettes, procedures require the use of separate pipette bulbs, devices that provide suction. The common rubber bulb is fairly simple and easy to use–shaped like a fist-sized balloon, the rubber bulb is squeezed and touched to the mouth of the pipette, while the pipette tip is placed in liquid. The liquid draws up as pressure on the bulb is slowly released. Other similar tools, such as safety pipette fillers and pipetting aids, also serve the same purpose.
How is it used?
First, hold the pipette at the upper portion using your thumb, pinky, ring and middle finger. Free your index finger. With your other hand, squeeze the rubber bulb and touch its opening to the top mouth of the pipette. Insert no more than a half-centimeter of the pipette into the rubber bulb. Afterwards, immerse the tip of the pipette into the liquid and slowly release your hand’s pressure on the rubber bulb. The liquid will then be drawn up into the pipette. Once the curved surface of the liquid, called the meniscus, reaches the target measurement, remove the bulb and quickly slip your free index finger over the tip of the pipette’s mouth. With your finger still firmly closed on the pipette, lift the pipette out of the liquid and into the receiving container. It is a safe option always to collect more than, but closest to, the graduation mark so that adjustments can be easily made. Observing the pipette at eye-level, carefully raise your index finger to lessen the liquid and reach the desired amount. Depending on the physical properties of the liquid, the meniscus may either be concave or convex–for both cases, the center of the meniscus is used as the basis for measurement.

The Mohr & Serological Pipette

As opposed to volumetric pipettes, measuring pipettes are thin glass tubes that are calibrated into small divisions of volume range so that different amounts of liquid may be measured and transferred. The two types of measuring pipettes–Mohr and serological pipettes–differ according to the placement of graduations. In Mohr pipettes, graduations always end before the tapered tip, while in serological pipettes, the graduations continue to the tip.

How are they used?

The procedure for the transfer of liquids in measuring pipettes is similar to that of volumetric pipettes, necessitating the usage of rubber bulbs or pipette aids. With measuring pipettes, it is also recommended that the volume of liquid to be collected is more than, but closest to, the target measurement so that adjustments can be easily made.
Automatic Micropipettes: The invention of the micropipette by Heinrich Schnitger in 1957 paved the way for measurement of smaller volumes in units of microliters through an automatic, push-button and piston technology. With the push of a retractable plunger or push-button, aspiration, dispensing, and purging of liquids are all made simpler. The automatic micropipette is also highly specialized–as opposed to manually measuring the liquid to line up to a graduation mark, as is the tradition in ordinary pipettes, automatic micropipettes allow the scientist to set the volume of liquid that needs to be transferred beforehand through a digital volumeter.

All micropipettes operate like an automatic syringe, but the two primary types–the air-displacement pipette and the positive-displacement pipette–differ based on the presence of an air cushion between the pipette piston and the liquid sample.

The Air-Displacement Pipette

Air-displacement pipettes always have a cushion of air between the pipette piston and the liquid. The simpler of the two instrument types, air-displacement pipettes are easily influenced by factors such as temperature, atmospheric pressure, specific gravity, and the liquid’s viscosity. Keeping the liquid away from the piston or barrel is an advantage, but also provides many limitations in terms of maintaining accuracy. For instance, working with liquids that may easily evaporate would require the use of the other type of pipette–positive-displacement pipettes.

How are they used?

Air-displacement and positive-displacement micropipettes involve a quicker and more efficient procedure for transferring liquids of specific volumes. The first step to using these automatic micropipettes is the push-button volume adjustment. Hold the body of the micropipette in one hand and use the other hand to rotate the push-button. Do not attempt to force the volume setting beyond the limits of your micropipette, at the risk of internal damage. Also, make sure that the numbers of your volume setting are in proper alignment. Afterwards, a disposable pipette tip is attached.

After setting the volume and attaching the disposable tip, the next step is the process of pre-rinsing. Pre-rinsing, also called pre-wetting, is a highly-advised procedure for achieving greater uniformity and precision, as it provides identical contact surfaces for the liquid to be aspirated. To pre-rinse, simply aspirate with the tip and then dispense back into the original reservoir or to a waste receptacle. Pre-rinsing should be performed each time you change a pipette tip, and when you increase the volume setting.

The operation of automatic micropipettes involves two points of resistance — the first stop, the point at which the piston reaches the calibrated volume on the digital volumeter, and the second stop, at which the remaining liquid is fully expelled or purged. When aspirating, two factors can influence the accuracy of your measurement — the aspiration angle and immersion depth. Prepare the micropipette by holding it in a nearly vertical position and depressing the plunger or push-button to the first stop position using your thumb. Once the push-button is in the first stop, immerse the pipette tip just below the surface of the liquid, to avoid droplets sticking on the outside of the pipette tip and slowly and smoothly release the plunger or push-button back to the rest position as you wait for the liquid to move up and into the tip. Do not let the plunger snap back up as this will result in air bubbles.

Once the liquid is collected, place the pipette tip at an angle of 10 to 45 degrees against the inside wall of the receiving vessel, and depress the plunger smoothly back to the first stop position to dispense the liquid. Wait one second, and then depress the plunger once more into the second stop position to “purge” or “blow-out” the tip of any residual liquid. Finally, remove the pipette tip by sliding it off the sidewall. The procedure is the same for positive-displacement micropipettes, except both the disposable pipette tip and piston are ejected and replaced after each transfer.

The Positive-Displacement Micropipette

The mechanism of positive-displacement pipettes involves a direct contact of the piston with the sample. This set-up makes positive-displacement pipettes more accurate for pipetting volatile solutions because there is no dead space for the liquid to evaporate. The absence of the air cushion also lessens the risk of contamination with corrosives and other bio-hazardous materials. However, these pipettes are more expensive as they replace both piston and tip after each use.

Pipette Tips & Multichannel Pipettes

A crucial step in using automatic micropipettes is choosing the right pipette tip. Pipette tips, which hold the aspirated liquid provide efficiency in laboratory procedures by not requiring thorough washing or cleaning, through quick replacement of the reusable or disposable tips after every use. Multichannel pipettes, meanwhile, provide maximum efficiency by allowing the aspiration of multiple pipette tips at the same time.

Taking Care of Pipettes and Micropipettes

 Finally, like any working device, micropipettes have many moving parts that are susceptible to wear and tear or breakage. Therefore, any responsible owner of pipettes and micropipettes must exhibit regular care and maintenance, even when these tools are not in use. Preventive pipette maintenance includes the process of calibration in preserving high-quality performance, accuracy, and precision. It is important to have your pipettes serviced at least twice a year by experienced pipette handlers and pipette clinics. Pipette owners must also clean pipettes after every session, and check pipettes daily for damage before use. In storing pipettes, pipette holders are recommended to ensure that the instruments are kept vertical and upright.

References
  1. Phillips, G. B., & Bailey, S. P. (1964). Hazards of mouth pipetting. ARMY BIOLOGICAL LABS FREDERICK MD.
  2. Biba, E. (2017). Lab Tools: The History of the Pipette. Retrieved from http://www.tested.com/science/611385-lab-tools-history-pipette/
  3. Klingenberg, M. (2006). The Original Micropipette. Retrieved from The Scientist, https://www.the-scientist.com/?articles.view/articleNo/19720/title/The-Original-Micropipette/
  4. Gilson Guide to Pipetting, 2nd Ed (2005).
  5. Automatic Micropipettes. Science Learning Center, University of Michigan-Dearborn. Retrieved from http://slc.umd.umich.edu/slconline/MICRPIP/AutomaticMicropipettes2.pdf
  6. Introduction to Pipettes. Science Learning Center, University of Michigan-Dearborn. Retrieved from http://slc.umd.umich.edu/slconline/PIPET/PPTpipetteslides-RLD4.pdf
  7. Koeman, K. (2015). 8 Tips to Improve Your Pipetting Technique. TTE Laboratories. Retrieved from http://www.ttelaboratories.com/Accuracy-Matters-Blog/entryid/12/8-tips-to-improve-your-pipetting-technique
  8. Oswald, N. (2016). 17 Ways to Stop Pipetting Errors From Ruining Your Experiments. Biotix. Retrieved from https://bitesizebio.com/344/17-ways-to-stop-pipetting-errors-ruining-your-experiments/
  9. Helmenstive, A. M. (2017). How to Read a Meniscus in Chemistry. ThoughtCo. Retrieved from https://www.thoughtco.com/how-to-read-a-meniscus-606055

Learn More about our Services and how can we help you with your research!

Introduction

In behavioral neuroscience, the Open Field Test (OFT) remains one of the most widely used assays to evaluate rodent models of affect, cognition, and motivation. It provides a non-invasive framework for examining how animals respond to novelty, stress, and pharmacological or environmental manipulations. Among the test’s core metrics, the percentage of time spent in the center zone offers a uniquely normalized and sensitive measure of an animal’s emotional reactivity and willingness to engage with a potentially risky environment.

This metric is calculated as the proportion of time spent in the central area of the arena—typically the inner 25%—relative to the entire session duration. By normalizing this value, researchers gain a behaviorally informative variable that is resilient to fluctuations in session length or overall movement levels. This makes it especially valuable in comparative analyses, longitudinal monitoring, and cross-model validation.

Unlike raw center duration, which can be affected by trial design inconsistencies, the percentage-based measure enables clearer comparisons across animals, treatments, and conditions. It plays a key role in identifying trait anxiety, avoidance behavior, risk-taking tendencies, and environmental adaptation, making it indispensable in both basic and translational research contexts.

Whereas simple center duration provides absolute time, the percentage-based metric introduces greater interpretability and reproducibility, especially when comparing different animal models, treatment conditions, or experimental setups. It is particularly effective for quantifying avoidance behaviors, risk assessment strategies, and trait anxiety profiles in both acute and longitudinal designs.

What Does Percentage of Time in the Centre Measure?

This metric reflects the relative amount of time an animal chooses to spend in the open, exposed portion of the arena—typically defined as the inner 25% of a square or circular enclosure. Because rodents innately prefer the periphery (thigmotaxis), time in the center is inversely associated with anxiety-like behavior. As such, this percentage is considered a sensitive, normalized index of:

  • Exploratory drive vs. risk aversion: High center time reflects an animal’s willingness to engage with uncertain or exposed environments, often indicative of lower anxiety and a stronger intrinsic drive to explore. These animals are more likely to exhibit flexible, information-gathering behaviors. On the other hand, animals that spend little time in the center display a strong bias toward the safety of the perimeter, indicative of a defensive behavioral state or trait-level risk aversion. This dichotomy helps distinguish adaptive exploration from fear-driven avoidance.

  • Emotional reactivity: Fluctuations in center time percentage serve as a sensitive behavioral proxy for changes in emotional state. In stress-prone or trauma-exposed animals, decreased center engagement may reflect hypervigilance or fear generalization, while a sudden increase might indicate emotional blunting or impaired threat appraisal. The metric is also responsive to acute stressors, environmental perturbations, or pharmacological interventions that impact affective regulation.

  • Behavioral confidence and adaptation: Repeated exposure to the same environment typically leads to reduced novelty-induced anxiety and increased behavioral flexibility. A rising trend in center time percentage across trials suggests successful habituation, reduced threat perception, and greater confidence in navigating open spaces. Conversely, a stable or declining trend may indicate behavioral rigidity or chronic stress effects.

  • Pharmacological or genetic modulation: The percentage of time in the center is widely used to evaluate the effects of pharmacological treatments and genetic modifications that influence anxiety-related circuits. Anxiolytic agents—including benzodiazepines, SSRIs, and cannabinoid agonists—reliably increase center occupancy, providing a robust behavioral endpoint in preclinical drug trials. Similarly, genetic models targeting serotonin receptors, GABAergic tone, or HPA axis function often show distinct patterns of center preference, offering translational insights into psychiatric vulnerability and resilience.

Critically, because this metric is normalized by session duration, it accommodates variability in activity levels or testing conditions. This makes it especially suitable for comparing across individuals, treatment groups, or timepoints in longitudinal studies.

A high percentage of center time indicates reduced anxiety, increased novelty-seeking, or pharmacological modulation (e.g., anxiolysis). Conversely, a low percentage suggests emotional inhibition, behavioral avoidance, or contextual hypervigilance. reduced anxiety, increased novelty-seeking, or pharmacological modulation (e.g., anxiolysis). Conversely, a low percentage suggests emotional inhibition, behavioral avoidance, or contextual hypervigilance.

Behavioral Significance and Neuroscientific Context

1. Emotional State and Trait Anxiety

The percentage of center time is one of the most direct, unconditioned readouts of anxiety-like behavior in rodents. It is frequently reduced in models of PTSD, chronic stress, or early-life adversity, where animals exhibit persistent avoidance of the center due to heightened emotional reactivity. This metric can also distinguish between acute anxiety responses and enduring trait anxiety, especially in longitudinal or developmental studies. Its normalized nature makes it ideal for comparing across cohorts with variable locomotor profiles, helping researchers detect true affective changes rather than activity-based confounds.

2. Exploration Strategies and Cognitive Engagement

Rodents that spend more time in the center zone typically exhibit broader and more flexible exploration strategies. This behavior reflects not only reduced anxiety but also cognitive engagement and environmental curiosity. High center percentage is associated with robust spatial learning, attentional scanning, and memory encoding functions, supported by coordinated activation in the prefrontal cortex, hippocampus, and basal forebrain. In contrast, reduced center engagement may signal spatial rigidity, attentional narrowing, or cognitive withdrawal, particularly in models of neurodegeneration or aging.

3. Pharmacological Responsiveness

The open field test remains one of the most widely accepted platforms for testing anxiolytic and psychotropic drugs. The percentage of center time reliably increases following administration of anxiolytic agents such as benzodiazepines, SSRIs, and GABA-A receptor agonists. This metric serves as a sensitive and reproducible endpoint in preclinical dose-finding studies, mechanistic pharmacology, and compound screening pipelines. It also aids in differentiating true anxiolytic effects from sedation or motor suppression by integrating with other behavioral parameters like distance traveled and entry count (Prut & Belzung, 2003).

4. Sex Differences and Hormonal Modulation

Sex-based differences in emotional regulation often manifest in open field behavior, with female rodents generally exhibiting higher variability in center zone metrics due to hormonal cycling. For example, estrogen has been shown to facilitate exploratory behavior and increase center occupancy, while progesterone and stress-induced corticosterone often reduce it. Studies involving gonadectomy, hormone replacement, or sex-specific genetic knockouts use this metric to quantify the impact of endocrine factors on anxiety and exploratory behavior. As such, it remains a vital tool for dissecting sex-dependent neurobehavioral dynamics.
The percentage of center time is one of the most direct, unconditioned readouts of anxiety-like behavior in rodents. It is frequently reduced in models of PTSD, chronic stress, or early-life adversity. Because it is normalized, this metric is especially helpful for distinguishing between genuine avoidance and low general activity.

Methodological Considerations

  • Zone Definition: Accurately defining the center zone is critical for reliable and reproducible data. In most open field arenas, the center zone constitutes approximately 25% of the total area, centrally located and evenly distanced from the walls. Software-based segmentation tools enhance precision and ensure consistency across trials and experiments. Deviations in zone parameters—whether due to arena geometry or tracking inconsistencies—can result in skewed data, especially when calculating percentages.

     

  • Trial Duration: Trials typically last between 5 to 10 minutes. The percentage of time in the center must be normalized to total trial duration to maintain comparability across animals and experimental groups. Longer trials may lead to fatigue, boredom, or habituation effects that artificially reduce exploratory behavior, while overly short trials may not capture full behavioral repertoires or response to novel stimuli.

     

  • Handling and Habituation: Variability in pre-test handling can introduce confounds, particularly through stress-induced hypoactivity or hyperactivity. Standardized handling routines—including gentle, consistent human interaction in the days leading up to testing—reduce variability. Habituation to the testing room and apparatus prior to data collection helps animals engage in more representative exploratory behavior, minimizing novelty-induced freezing or erratic movement.

     

  • Tracking Accuracy: High-resolution tracking systems should be validated for accurate, real-time detection of full-body center entries and sustained occupancy. The system should distinguish between full zone occupancy and transient overlaps or partial body entries that do not reflect true exploratory behavior. Poor tracking fidelity or lag can produce significant measurement error in percentage calculations.

     

  • Environmental Control: Uniformity in environmental conditions is essential. Lighting should be evenly diffused to avoid shadow bias, and noise should be minimized to prevent stress-induced variability. The arena must be cleaned between trials using odor-neutral solutions to eliminate scent trails or pheromone cues that may affect zone preference. Any variation in these conditions can introduce systematic bias in center zone behavior. Use consistent definitions of the center zone (commonly 25% of total area) to allow valid comparisons. Software-based segmentation enhances spatial precision.

Interpretation with Complementary Metrics

Temporal Dynamics of Center Occupancy

Evaluating how center time evolves across the duration of a session—divided into early, middle, and late thirds—provides insight into behavioral transitions and adaptive responses. Animals may begin by avoiding the center, only to gradually increase center time as they habituate to the environment. Conversely, persistently low center time across the session can signal prolonged anxiety, fear generalization, or a trait-like avoidance phenotype.

Cross-Paradigm Correlation

To validate the significance of center time percentage, it should be examined alongside results from other anxiety-related tests such as the Elevated Plus Maze, Light-Dark Box, or Novelty Suppressed Feeding. Concordance across paradigms supports the reliability of center time as a trait marker, while discordance may indicate task-specific reactivity or behavioral dissociation.

Behavioral Microstructure Analysis

When paired with high-resolution scoring of behavioral events such as rearing, grooming, defecation, or immobility, center time offers a richer view of the animal’s internal state. For example, an animal that spends substantial time in the center while grooming may be coping with mild stress, while another that remains immobile in the periphery may be experiencing more severe anxiety. Microstructure analysis aids in decoding the complexity behind spatial behavior.

Inter-individual Variability and Subgroup Classification

Animals naturally vary in their exploratory style. By analyzing percentage of center time across subjects, researchers can identify behavioral subgroups—such as consistently bold individuals who frequently explore the center versus cautious animals that remain along the periphery. These classifications can be used to examine predictors of drug response, resilience to stress, or vulnerability to neuropsychiatric disorders.

Machine Learning-Based Behavioral Clustering

In studies with large cohorts or multiple behavioral variables, machine learning techniques such as hierarchical clustering or principal component analysis can incorporate center time percentage to discover novel phenotypic groupings. These data-driven approaches help uncover latent dimensions of behavior that may not be visible through univariate analyses alone.

Total Distance Traveled

Total locomotion helps contextualize center time. Low percentage values in animals with minimal movement may reflect sedation or fatigue, while similar values in high-mobility subjects suggest deliberate avoidance. This metric helps distinguish emotional versus motor causes of low center engagement.

Number of Center Entries

This measure indicates how often the animal initiates exploration of the center zone. When combined with percentage of time, it differentiates between frequent but brief visits (indicative of anxiety or impulsivity) versus fewer but sustained center engagements (suggesting comfort and behavioral confidence).

Latency to First Center Entry

The delay before the first center entry reflects initial threat appraisal. Longer latencies may be associated with heightened fear or low motivation, while shorter latencies are typically linked to exploratory drive or low anxiety.

Thigmotaxis Time

Time spent hugging the walls offers a spatial counterbalance to center metrics. High thigmotaxis and low center time jointly support an interpretation of strong avoidance behavior. This inverse relationship helps triangulate affective and motivational states.

Applications in Translational Research

  • Drug Discovery: The percentage of center time is a key behavioral endpoint in the development and screening of anxiolytic, antidepressant, and antipsychotic medications. Its sensitivity to pharmacological modulation makes it particularly valuable in dose-response assessments and in distinguishing therapeutic effects from sedative or locomotor confounds. Repeated trials can also help assess drug tolerance and chronic efficacy over time.
  • Genetic and Neurodevelopmental Modeling: In transgenic and knockout models, altered center percentage provides a behavioral signature of neurodevelopmental abnormalities. This is particularly relevant in the study of autism spectrum disorders, ADHD, fragile X syndrome, and schizophrenia, where subjects often exhibit heightened anxiety, reduced flexibility, or altered environmental engagement.
  • Hormonal and Sex-Based Research: The metric is highly responsive to hormonal fluctuations, including estrous cycle phases, gonadectomy, and hormone replacement therapies. It supports investigations into sex differences in stress reactivity and the behavioral consequences of endocrine disorders or interventions.
  • Environmental Enrichment and Deprivation: Housing conditions significantly influence anxiety-like behavior and exploratory motivation. Animals raised in enriched environments typically show increased center time, indicative of reduced stress and greater behavioral plasticity. Conversely, socially isolated or stimulus-deprived animals often show strong center avoidance.
  • Behavioral Biomarker Development: As a robust and reproducible readout, center time percentage can serve as a behavioral biomarker in longitudinal and interventional studies. It is increasingly used to identify early signs of affective dysregulation or to track the efficacy of neuromodulatory treatments such as optogenetics, chemogenetics, or deep brain stimulation.
  • Personalized Preclinical Models: This measure supports behavioral stratification, allowing researchers to identify high-anxiety or low-anxiety phenotypes before treatment. This enables within-group comparisons and enhances statistical power by accounting for pre-existing behavioral variation. Used to screen anxiolytic agents and distinguish between compounds with sedative vs. anxiolytic profiles.

Enhancing Research Outcomes with Percentage-Based Analysis

By expressing center zone activity as a proportion of total trial time, researchers gain a metric that is resistant to session variability and more readily comparable across time, treatment, and model conditions. This normalized measure enhances reproducibility and statistical power, particularly in multi-cohort or cross-laboratory designs.

For experimental designs aimed at assessing anxiety, exploratory strategy, or affective state, the percentage of time spent in the center offers one of the most robust and interpretable measures available in the Open Field Test.

Explore high-resolution tracking solutions and open field platforms at

References

  • Prut, L., & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, 463(1–3), 3–33.
  • Seibenhener, M. L., & Wooten, M. C. (2015). Use of the open field maze to measure locomotor and anxiety-like behavior in mice. Journal of Visualized Experiments, (96), e52434.
  • Crawley, J. N. (2007). What’s Wrong With My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice. Wiley-Liss.
  • Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F., & Renzi, P. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behavior in inbred mice. Behavioral Brain Research, 134(1–2), 49–57.

Written by researchers, for researchers — powered by Conduct Science.