Cart

Dejan Matlak PostManager
An independent anthropologist with years of experience in academic writing and social science. His main field of interest is medical anthropology and the development of multidisciplinarian approaches for scientific research. He supports the furthering of science and critical thinking.
×
Dejan Matlak PostManager
An independent anthropologist with years of experience in academic writing and social science. His main field of interest is medical anthropology and the development of multidisciplinarian approaches for scientific research. He supports the furthering of science and critical thinking.
Latest Posts
  • Cannabinoids
  • SARS-CoV-2
  • Brain and gut
  • Follow-up

About the Research

Research about brain function in neuroscience is on the rise because of the contributions of modern technology. However, the scientific understanding of how the brain works is not complete. Until now the dominant practice in neuroscience research was to segment the brain into regions. The practice of brain segmentation is based on our observation of particular regions of the brain and what they appear to be doing.

Even though we understand how different regions function our understanding of how they interact is incomplete. Mostly because we cannot observe how the brain works in real-time and in everyday surroundings. Until now the main practice was to conduct experiments and monitor brain function and then to pinpoint those regions through an autopsy. However, this method left a plastic understanding of the brain and its regions. Furthermore, there was no way to link the different brain functions with specific physical structures in the brain.

Researchers from the Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences at MIT found a potential solution. They achieved this by combining functional mapping and by distinguishing structural information in the cortex and the deep tissue below. The experiments were done on live mice as they freely interact with their environment.

More precisely, the research team combines a method for charting functional areas (retinotopic mapping) with deep structural information measures. The later is done through the use of novel technology, third-harmonic generation (THG) three-photon microscopy.

The Benefits

Through this method, scientists can gain a better understanding of how structural differences develop in the brain and how they change over time. Furthermore, we may come to understand how individual structural changes appear and under what circumstances. That is, we will understand how certain diseases develop, like Alzheimer’s.

Main Takeaways

  • Scientists from MIT developed a new method for studying brain function in live animals.
  • The method uses live imaging techniques to do develop images that show how brain structure and function correlate.
  • This new method will bring neuroscience closer to understanding brain disease.

Free shipping in local orders over $250

X