x
[quotes_form]
Spectrophotometer

Spectrophotometer

Need a Spectrophotometer for your Lab?

The spectrophotometer is a common optical device that measures the intensity of light relative to color (or wavelength). In the lab, they are used to determine how much light is absorbed by a colored chemical dissolved in the solution. This allows us to calculate the concentration or purity of chemicals, analyze specific chemical characteristics, and follow and measure chemical reactions in real-time.

As spectrophotometers use colored light to measure the absorbance of colored chemicals, let’s briefly describe the basic principles of color and light absorbance.

Color and light absorbance
Color

The colors we see are light waves of electromagnetic radiation and each color has a different wavelength. The wavelengths of light we can see (visible) are between 380 nanometres (nm) in the violet range (V) to 750 nm in the red range (R). Figure 1 shows the visible spectrum.

Figure 1: Visible light spectrum. Numbers represent wavelength (nm) (source: Wikimedia Commons, public domain).

Light absorbance

Colored chemicals have color because they absorb some light waves while reflecting others. So, a red chemical absorbs all light waves and reflects the red wavelength light back to our eyes. And, a blue chemical reflects all light except for light with blue wavelengths.

Spectrophotometer components

Figure 2 shows the basic components of a spectrophotometer. Essentially, light from a specific source is split into different wavelengths (colors), then a selected wavelength passes through the sample and its final intensity is measured. Let’s break down each component.

Figure 2: Basic components of a spectrophotometer (source: Wikimedia Commons, CC-BY-SA).

Light source

The light source for a spectrophotometer that measures visible light uses an incandescent lamp with a tungsten filament. They look like very small light bulbs with two metal prongs.

Monochromator

The monochromator takes the light from the lamp and splits it into different colors or wavelengths. It works like a prism that bends light, separating the light into different wavelengths by refraction.

Aperture

The aperture is simply a hole that creates a light beam. The size of the hole can be adjusted larger or smaller.

Cuvette (with sample)

The cuvette is a small square vial that holds the solution with the colored chemical we want to measure (sample). They can be made of glass or plastic. They can hold volumes from 0.1 ml to 5ml.

Photodetector/amplifier

The photodetector is a device that can convert light into an electrical signal. And the amplifier boosts the electrical signal to increase the sensitivity.

Output

Spectrophotometers have a numerical readout to quantify the amount of light that’s absorbed as it passes through the sample. Older models use an analog needle and dial while newer models have digital readouts.

Using a spectrophotometer

Spectrophotometers are used to measure the amount of light that’s absorbed by a colored chemical in a solution. But how do we convert the numbers on the output into usable information? To answer this question, we must understand the optical theory of absorbance described by the Beer-Lambert Law.

Beer-Lambert Law

The Beer-Lambert Law describes the relationship between absorbance and the amount of chemical in solution and the distance light has to travel through the sample.

The Beer-Lambert Law is A = εcl, where A is the absorbance (no units), ε = molar extinction coefficient (M-1 cm-1), c = concentration of the substance (M), and l = path length of the light (cm).

  • Absorbance (A) is determined by measuring the intensity of the light that passes through the sample (I) compared to the intensity of the original light (Io) (see Fig.2). This is called transmittance (T) and is defined by the equation T = I / Io.
    Absorbance and transmittance are related by the equation, A = -log T. So, the spectrophotometer measures T, then calculates A, which is displayed on the output reader. The higher the amount of absorbance means less light is being transmitted, which results in a higher output reading. For example, if 50% of the light is transmitted (T=0.5), then A = 0.3. Likewise, if only 10% of the light is transmitted (T=0.1), then A = 1. Absorbance has also been called optical density (or O.D.).
  • The molar extinction coefficient (ε), with units M-1 cm-1, is a constant number that relates the amount of light a chemical will absorb at a given wavelength and concentration. It can be determined by measuring the absorbance of a chemical at a specific wavelength and concentration (ε = A/c).
  • According to the Beer-Lambert equation, the absorbance is proportional to the concentration. That is, the more concentrated the colored chemical, the more light it absorbs. So, doubling the concentration will double the amount of light that’s absorbed.
  • The path length refers to how far the light must travel through the solution. It’s also proportional to absorbance so, likewise, doubling the path length doubles the absorbance. The pathlength of most cuvettes is consistently 1 cm, so pathlength units cancel out of the equation when calculating samples.

 

Basic measurement

Spectrophotometers have a panel area to set wavelengths, adjust other functions, and the output display. And they have a sample area with a square sample holder that nicely fits a cuvette, sitting directly in the path of the light beam shining on the detector. The sample area is also closed off to the outside light to prevent extra light from affecting the readings.

If we want to know the absorbance of a specific chemical in a solution, we must also account for the absorbance of the solution itself. So, we make two cuvettes, one with solution only (reference or blank), and one with solution plus the chemical we want to measure.

The reference solution is first put into the sample holder. The spectrophotometer has a button to “tare” the absorbance reading to A=0. Then the sample is put into the holder and the absorbance of the chemical is read on the display.

Absorbance spectrum

The absorbance spectrum of a chemical is the amount of light it absorbs at all the different wavelengths from violet to red. The spectrophotometer measures the absorbance of each different wavelength by adjusting the monochromator. Depending on the color of the solution, the absorbance will peak at specific wavelengths.

For example, figure 3 shows the absorbance spectrum of two types of chlorophyll (a,b), the biochemicals that make plants green. The plot shows the absorbance vs. wavelength(nm). We see absorbance peaks at either end for the light spectra. Chlorophyll absorbs blue and red light and reflects green light.

Figure 3. Absorbance spectrum of chlorophyll-a,-b (source: Wikimedia Commons, CC-BY-SA).

Measuring concentration

Measuring the concentration of a chemical in a solution using a spectrophotometer is its most common application. By rearranging the Beer-Lambert equation (A = εcl) to c= A/εl, we can calculate the concentration directly from an absorbance reading. Since the path length (l) is 1 cm, all we need is the extinction coefficient (ε). Extinction coefficients are typically already known so it’s easy to just plug the number into the equation and calculate concentration.

For example, the ε for chlorophyll-a is 105 M−1 cm−1. Therefore, a reading of A=1.0 would mean the concentration of chlorophyll = 1.0/105 = 0.00001 Molar (M) or 0.01 mM (or 10µM).

An extinction coefficient can also be determined from an absorbance spectrum. In figure 3, there are two absorbance peaks for chlorophyll-a, one in the blue region (430nm) and the other in the red region (662nm). If a known concentration of chlorophyll-a is measured, then ε (at 430nm or 662nm) can be calculated by ε = A/c.

Kinetics – change in concentration over time

Chemical kinetics is the study of reactions over time. Using a spectrophotometer, we can monitor a chemical reaction as it occurs in real-time. In the same way, we add a sample with one reactant to the cuvette and set the reading to zero. Then we add a second reactant, mix, and take absorbance readings of the product at various time points. By converting absorbance to concentration, we can plot the concentration versus time and calculate the rate of the reaction. And, by changing the concentrations of reactants, we analyze the nature of the chemical reaction itself.

 

Types of spectrophotometers

We’ve discussed spectrophotometers that use visible light to measure colored chemicals. There are also spectrophotometers that use ultraviolet light (UV), and some that use more than one light beam.

UV spectrophotometers

Most visible spectrophotometers also use UV light to measure non-colored chemicals that absorb UV light using wavelengths between 180nm to 400nm. Instead of a tungsten lamp as the light source, UV spectrophotometers use a deuterium lamp (D2). Also, special cuvettes made from quartz are needed as glass and most plastic cuvettes absorb UV light. There are, however, UV cuvettes made from special plastics.

The most common use for UV spectrophotometer is to measure the concentration of DNA and proteins in solution. DNA absorbs UV light at 260nm while proteins absorb UV light at 280nm.

 

Single beam vs double beam spectrophotometers

Single beam spectrophotometers have a single beam that shines through the sample. Before the sample is read, however, a reference sample must be measured. With a double-beam spectrophotometer, there are two beams, one for the reference sample and one for the test sample measured at the same time.

 

Limitations

The primary limitation of spectrophotometers is they can’t measure chemicals that don’t have a color or absorb UV light. We can, however, add chemicals that react with uncolored compounds to produce a colored product that can be measured.

Spectrophotometers work best with dilute solutions that have an absorbance reading between 0 and 1. As described above, a sample that transmits only 10% of the light (90% absorbed) gives a reading of 1. Likewise, a more concentrated sample that absorbs more light and transmits 1% of the light (99% absorbed) gives a reading of 2. So, the most precise readings of absorbance are between 0 and 1 (0 to 90% absorbance). If a sample is too concentrated, it must be diluted, the absorbance read, then multiplied by the dilution factor.

 

Maintenance

Fortunately, spectrophotometers are built to need very little maintenance. Apart from keeping them clean and wiping up from liquid spills, the light sources need to be changed when they no longer produce enough light. It’s best to always have extra lamps on hand in case the lamps burn out.

Spectrophotometers are one of the most useful scientific instruments to detect, measure, and characterize chemicals in solutions. With chemicals that absorb light, their absorbance spectra and concentrations can be determined quickly and easily. And they can also be used to measure chemical reaction rates in real-time.

Learn More about our Services and how can we help you with your research!

Introduction

In behavioral neuroscience, the Open Field Test (OFT) remains one of the most widely used assays to evaluate rodent models of affect, cognition, and motivation. It provides a non-invasive framework for examining how animals respond to novelty, stress, and pharmacological or environmental manipulations. Among the test’s core metrics, the percentage of time spent in the center zone offers a uniquely normalized and sensitive measure of an animal’s emotional reactivity and willingness to engage with a potentially risky environment.

This metric is calculated as the proportion of time spent in the central area of the arena—typically the inner 25%—relative to the entire session duration. By normalizing this value, researchers gain a behaviorally informative variable that is resilient to fluctuations in session length or overall movement levels. This makes it especially valuable in comparative analyses, longitudinal monitoring, and cross-model validation.

Unlike raw center duration, which can be affected by trial design inconsistencies, the percentage-based measure enables clearer comparisons across animals, treatments, and conditions. It plays a key role in identifying trait anxiety, avoidance behavior, risk-taking tendencies, and environmental adaptation, making it indispensable in both basic and translational research contexts.

Whereas simple center duration provides absolute time, the percentage-based metric introduces greater interpretability and reproducibility, especially when comparing different animal models, treatment conditions, or experimental setups. It is particularly effective for quantifying avoidance behaviors, risk assessment strategies, and trait anxiety profiles in both acute and longitudinal designs.

What Does Percentage of Time in the Centre Measure?

This metric reflects the relative amount of time an animal chooses to spend in the open, exposed portion of the arena—typically defined as the inner 25% of a square or circular enclosure. Because rodents innately prefer the periphery (thigmotaxis), time in the center is inversely associated with anxiety-like behavior. As such, this percentage is considered a sensitive, normalized index of:

  • Exploratory drive vs. risk aversion: High center time reflects an animal’s willingness to engage with uncertain or exposed environments, often indicative of lower anxiety and a stronger intrinsic drive to explore. These animals are more likely to exhibit flexible, information-gathering behaviors. On the other hand, animals that spend little time in the center display a strong bias toward the safety of the perimeter, indicative of a defensive behavioral state or trait-level risk aversion. This dichotomy helps distinguish adaptive exploration from fear-driven avoidance.

  • Emotional reactivity: Fluctuations in center time percentage serve as a sensitive behavioral proxy for changes in emotional state. In stress-prone or trauma-exposed animals, decreased center engagement may reflect hypervigilance or fear generalization, while a sudden increase might indicate emotional blunting or impaired threat appraisal. The metric is also responsive to acute stressors, environmental perturbations, or pharmacological interventions that impact affective regulation.

  • Behavioral confidence and adaptation: Repeated exposure to the same environment typically leads to reduced novelty-induced anxiety and increased behavioral flexibility. A rising trend in center time percentage across trials suggests successful habituation, reduced threat perception, and greater confidence in navigating open spaces. Conversely, a stable or declining trend may indicate behavioral rigidity or chronic stress effects.

  • Pharmacological or genetic modulation: The percentage of time in the center is widely used to evaluate the effects of pharmacological treatments and genetic modifications that influence anxiety-related circuits. Anxiolytic agents—including benzodiazepines, SSRIs, and cannabinoid agonists—reliably increase center occupancy, providing a robust behavioral endpoint in preclinical drug trials. Similarly, genetic models targeting serotonin receptors, GABAergic tone, or HPA axis function often show distinct patterns of center preference, offering translational insights into psychiatric vulnerability and resilience.

Critically, because this metric is normalized by session duration, it accommodates variability in activity levels or testing conditions. This makes it especially suitable for comparing across individuals, treatment groups, or timepoints in longitudinal studies.

A high percentage of center time indicates reduced anxiety, increased novelty-seeking, or pharmacological modulation (e.g., anxiolysis). Conversely, a low percentage suggests emotional inhibition, behavioral avoidance, or contextual hypervigilance. reduced anxiety, increased novelty-seeking, or pharmacological modulation (e.g., anxiolysis). Conversely, a low percentage suggests emotional inhibition, behavioral avoidance, or contextual hypervigilance.

Behavioral Significance and Neuroscientific Context

1. Emotional State and Trait Anxiety

The percentage of center time is one of the most direct, unconditioned readouts of anxiety-like behavior in rodents. It is frequently reduced in models of PTSD, chronic stress, or early-life adversity, where animals exhibit persistent avoidance of the center due to heightened emotional reactivity. This metric can also distinguish between acute anxiety responses and enduring trait anxiety, especially in longitudinal or developmental studies. Its normalized nature makes it ideal for comparing across cohorts with variable locomotor profiles, helping researchers detect true affective changes rather than activity-based confounds.

2. Exploration Strategies and Cognitive Engagement

Rodents that spend more time in the center zone typically exhibit broader and more flexible exploration strategies. This behavior reflects not only reduced anxiety but also cognitive engagement and environmental curiosity. High center percentage is associated with robust spatial learning, attentional scanning, and memory encoding functions, supported by coordinated activation in the prefrontal cortex, hippocampus, and basal forebrain. In contrast, reduced center engagement may signal spatial rigidity, attentional narrowing, or cognitive withdrawal, particularly in models of neurodegeneration or aging.

3. Pharmacological Responsiveness

The open field test remains one of the most widely accepted platforms for testing anxiolytic and psychotropic drugs. The percentage of center time reliably increases following administration of anxiolytic agents such as benzodiazepines, SSRIs, and GABA-A receptor agonists. This metric serves as a sensitive and reproducible endpoint in preclinical dose-finding studies, mechanistic pharmacology, and compound screening pipelines. It also aids in differentiating true anxiolytic effects from sedation or motor suppression by integrating with other behavioral parameters like distance traveled and entry count (Prut & Belzung, 2003).

4. Sex Differences and Hormonal Modulation

Sex-based differences in emotional regulation often manifest in open field behavior, with female rodents generally exhibiting higher variability in center zone metrics due to hormonal cycling. For example, estrogen has been shown to facilitate exploratory behavior and increase center occupancy, while progesterone and stress-induced corticosterone often reduce it. Studies involving gonadectomy, hormone replacement, or sex-specific genetic knockouts use this metric to quantify the impact of endocrine factors on anxiety and exploratory behavior. As such, it remains a vital tool for dissecting sex-dependent neurobehavioral dynamics.
The percentage of center time is one of the most direct, unconditioned readouts of anxiety-like behavior in rodents. It is frequently reduced in models of PTSD, chronic stress, or early-life adversity. Because it is normalized, this metric is especially helpful for distinguishing between genuine avoidance and low general activity.

Methodological Considerations

  • Zone Definition: Accurately defining the center zone is critical for reliable and reproducible data. In most open field arenas, the center zone constitutes approximately 25% of the total area, centrally located and evenly distanced from the walls. Software-based segmentation tools enhance precision and ensure consistency across trials and experiments. Deviations in zone parameters—whether due to arena geometry or tracking inconsistencies—can result in skewed data, especially when calculating percentages.

     

  • Trial Duration: Trials typically last between 5 to 10 minutes. The percentage of time in the center must be normalized to total trial duration to maintain comparability across animals and experimental groups. Longer trials may lead to fatigue, boredom, or habituation effects that artificially reduce exploratory behavior, while overly short trials may not capture full behavioral repertoires or response to novel stimuli.

     

  • Handling and Habituation: Variability in pre-test handling can introduce confounds, particularly through stress-induced hypoactivity or hyperactivity. Standardized handling routines—including gentle, consistent human interaction in the days leading up to testing—reduce variability. Habituation to the testing room and apparatus prior to data collection helps animals engage in more representative exploratory behavior, minimizing novelty-induced freezing or erratic movement.

     

  • Tracking Accuracy: High-resolution tracking systems should be validated for accurate, real-time detection of full-body center entries and sustained occupancy. The system should distinguish between full zone occupancy and transient overlaps or partial body entries that do not reflect true exploratory behavior. Poor tracking fidelity or lag can produce significant measurement error in percentage calculations.

     

  • Environmental Control: Uniformity in environmental conditions is essential. Lighting should be evenly diffused to avoid shadow bias, and noise should be minimized to prevent stress-induced variability. The arena must be cleaned between trials using odor-neutral solutions to eliminate scent trails or pheromone cues that may affect zone preference. Any variation in these conditions can introduce systematic bias in center zone behavior. Use consistent definitions of the center zone (commonly 25% of total area) to allow valid comparisons. Software-based segmentation enhances spatial precision.

Interpretation with Complementary Metrics

Temporal Dynamics of Center Occupancy

Evaluating how center time evolves across the duration of a session—divided into early, middle, and late thirds—provides insight into behavioral transitions and adaptive responses. Animals may begin by avoiding the center, only to gradually increase center time as they habituate to the environment. Conversely, persistently low center time across the session can signal prolonged anxiety, fear generalization, or a trait-like avoidance phenotype.

Cross-Paradigm Correlation

To validate the significance of center time percentage, it should be examined alongside results from other anxiety-related tests such as the Elevated Plus Maze, Light-Dark Box, or Novelty Suppressed Feeding. Concordance across paradigms supports the reliability of center time as a trait marker, while discordance may indicate task-specific reactivity or behavioral dissociation.

Behavioral Microstructure Analysis

When paired with high-resolution scoring of behavioral events such as rearing, grooming, defecation, or immobility, center time offers a richer view of the animal’s internal state. For example, an animal that spends substantial time in the center while grooming may be coping with mild stress, while another that remains immobile in the periphery may be experiencing more severe anxiety. Microstructure analysis aids in decoding the complexity behind spatial behavior.

Inter-individual Variability and Subgroup Classification

Animals naturally vary in their exploratory style. By analyzing percentage of center time across subjects, researchers can identify behavioral subgroups—such as consistently bold individuals who frequently explore the center versus cautious animals that remain along the periphery. These classifications can be used to examine predictors of drug response, resilience to stress, or vulnerability to neuropsychiatric disorders.

Machine Learning-Based Behavioral Clustering

In studies with large cohorts or multiple behavioral variables, machine learning techniques such as hierarchical clustering or principal component analysis can incorporate center time percentage to discover novel phenotypic groupings. These data-driven approaches help uncover latent dimensions of behavior that may not be visible through univariate analyses alone.

Total Distance Traveled

Total locomotion helps contextualize center time. Low percentage values in animals with minimal movement may reflect sedation or fatigue, while similar values in high-mobility subjects suggest deliberate avoidance. This metric helps distinguish emotional versus motor causes of low center engagement.

Number of Center Entries

This measure indicates how often the animal initiates exploration of the center zone. When combined with percentage of time, it differentiates between frequent but brief visits (indicative of anxiety or impulsivity) versus fewer but sustained center engagements (suggesting comfort and behavioral confidence).

Latency to First Center Entry

The delay before the first center entry reflects initial threat appraisal. Longer latencies may be associated with heightened fear or low motivation, while shorter latencies are typically linked to exploratory drive or low anxiety.

Thigmotaxis Time

Time spent hugging the walls offers a spatial counterbalance to center metrics. High thigmotaxis and low center time jointly support an interpretation of strong avoidance behavior. This inverse relationship helps triangulate affective and motivational states.

Applications in Translational Research

  • Drug Discovery: The percentage of center time is a key behavioral endpoint in the development and screening of anxiolytic, antidepressant, and antipsychotic medications. Its sensitivity to pharmacological modulation makes it particularly valuable in dose-response assessments and in distinguishing therapeutic effects from sedative or locomotor confounds. Repeated trials can also help assess drug tolerance and chronic efficacy over time.
  • Genetic and Neurodevelopmental Modeling: In transgenic and knockout models, altered center percentage provides a behavioral signature of neurodevelopmental abnormalities. This is particularly relevant in the study of autism spectrum disorders, ADHD, fragile X syndrome, and schizophrenia, where subjects often exhibit heightened anxiety, reduced flexibility, or altered environmental engagement.
  • Hormonal and Sex-Based Research: The metric is highly responsive to hormonal fluctuations, including estrous cycle phases, gonadectomy, and hormone replacement therapies. It supports investigations into sex differences in stress reactivity and the behavioral consequences of endocrine disorders or interventions.
  • Environmental Enrichment and Deprivation: Housing conditions significantly influence anxiety-like behavior and exploratory motivation. Animals raised in enriched environments typically show increased center time, indicative of reduced stress and greater behavioral plasticity. Conversely, socially isolated or stimulus-deprived animals often show strong center avoidance.
  • Behavioral Biomarker Development: As a robust and reproducible readout, center time percentage can serve as a behavioral biomarker in longitudinal and interventional studies. It is increasingly used to identify early signs of affective dysregulation or to track the efficacy of neuromodulatory treatments such as optogenetics, chemogenetics, or deep brain stimulation.
  • Personalized Preclinical Models: This measure supports behavioral stratification, allowing researchers to identify high-anxiety or low-anxiety phenotypes before treatment. This enables within-group comparisons and enhances statistical power by accounting for pre-existing behavioral variation. Used to screen anxiolytic agents and distinguish between compounds with sedative vs. anxiolytic profiles.

Enhancing Research Outcomes with Percentage-Based Analysis

By expressing center zone activity as a proportion of total trial time, researchers gain a metric that is resistant to session variability and more readily comparable across time, treatment, and model conditions. This normalized measure enhances reproducibility and statistical power, particularly in multi-cohort or cross-laboratory designs.

For experimental designs aimed at assessing anxiety, exploratory strategy, or affective state, the percentage of time spent in the center offers one of the most robust and interpretable measures available in the Open Field Test.

Explore high-resolution tracking solutions and open field platforms at

References

  • Prut, L., & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, 463(1–3), 3–33.
  • Seibenhener, M. L., & Wooten, M. C. (2015). Use of the open field maze to measure locomotor and anxiety-like behavior in mice. Journal of Visualized Experiments, (96), e52434.
  • Crawley, J. N. (2007). What’s Wrong With My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice. Wiley-Liss.
  • Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F., & Renzi, P. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behavior in inbred mice. Behavioral Brain Research, 134(1–2), 49–57.

Written by researchers, for researchers — powered by Conduct Science.