Sale!

Stereotaxic Surgery Kit

$495.00

Clear
SKU: N/A Categories: , , ,

Introduction

Stereotactic neurosurgery is the surgical technique used in pre-clinical research to engraft a needle or electrode at a pre-defined location in the rodent’s brain. Stereotactic neurosurgery employs advanced imaging techniques and surgical tools to translate the rodent brain-related research in human applications.

In 1887, Sir Victor Horsley, while studying the connections of the cerebellum, realized that a specific method to allow precise lesioning of the cerebral nuclei is essential. This realization led to the introduction of stereotaxy in neuroscience research. Stereotactic neurosurgery has enabled the localization of targets of interest with a multifaceted set of techniques that can assess anatomic, metabolic, and functional aspects and allow precise interventions on the brain or spinal cord regions (Barbara, Damien, & Catherine, 2014).

Horsley and Clarke pioneered the principles of stereotaxic surgery. Stereotaxy required radiological tools to visualize the cranial vault and its contents before the development of magnetic resonance imaging (MRI). The stereotactic technique was later modified with the introduction of MRI to visualize and assess the tumoral pathologies. Over the last two decades, stereotaxic surgery has well established itself in the research. The stereotaxic surgery is widely applied for the symptomatic treatment of motor disorders, assessment of tumoral pathologies, interstitial radiotherapies, treatment of hydrocephaly and epilepsy, and evaluation of cerebral arteriovenous malformations. The stereotaxic methodologies integrated with computed imaging techniques have made the stereotaxic surgery an important technique in neurosurgery.

Stereotactic neurosurgery is the surgical technique used in pre-clinical research to engraft a needle or electrode at a pre-defined location in the rodent’s brain. Stereotactic neurosurgery employs advanced imaging techniques and surgical tools to translate the rodent brain-related research in human applications.

In 1887, Sir Victor Horsley, while studying the connections of the cerebellum, realized that a specific method to allow precise lesioning of the cerebral nuclei is essential. This realization led to the introduction of stereotaxy in neuroscience research. Stereotactic neurosurgery has enabled the localization of targets of interest with a multifaceted set of techniques that can assess anatomic, metabolic, and functional aspects and allow precise interventions on the brain or spinal cord regions (Barbara, Damien, & Catherine, 2014).

Horsley and Clarke pioneered the principles of stereotaxic surgery. Stereotaxy required radiological tools to visualize the cranial vault and its contents before the development of magnetic resonance imaging (MRI). The stereotactic technique was later modified with the introduction of MRI to visualize and assess the tumoral pathologies. Over the last two decades, stereotaxic surgery has well established itself in the research. The stereotaxic surgery is widely applied for the symptomatic treatment of motor disorders, assessment of tumoral pathologies, interstitial radiotherapies, treatment of hydrocephaly and epilepsy, and evaluation of cerebral arteriovenous malformations. The stereotaxic methodologies integrated with computed imaging techniques have made the stereotaxic surgery an important technique in neurosurgery.

Apparatus

Pre-operative Set-up and Anesthesia Induction

Before beginning with the surgical procedure, it is essential to check that the animals are in good health by analyzing their appearance and general behavior. The subjects can be examined clinically to detect certain anomalies. If any abnormality is found, it is necessary to not use that animal as a subject in a neurosurgical procedure because the abnormality may cause anatomical or behavioral alterations and could interfere with the experimental results. The investigator should not use the animal if it shows reduced appetite, weight loss, abnormal exploratory behavior, bite marks, scratches, self-mutilation, prostration, hyper-responsiveness, patchy, dull, and/or ruffled fur, and abnormal posture or facial expression. Assess the animal for its health and activeness.

Anesthesia Induction

Before beginning the surgical procedure, give the animal a dose of an analgesic such as carprofen. After 15 minutes of the analgesia induction, induce the anesthesia with an intraperitoneal injection of xylazine and ketamine. Induce the local anesthesia with a subcutaneous injection of lidocaine or bupivacaine at the sites of the incision and the pressure points of the stereotaxic apparatus. It is recommended to use a solution of 2 % adrenaline (epinephrine: 5 mg/ml) and dilute it to ¼ in sterile water.

Note: The dose should not exceed 7 mg/kg, i.e., 40 μl for the mouse and 350 μl for the rat.

Stereotaxic Surgery Protocol

Shearing

Shearing is performed to eliminate hair and facilitate the disinfection of the skin. Do not injure the skin while shearing, since any inflammation can potentiate local superinfection and weaken the tissues of interest. Shearing should be performed in the preparation zone after the animal is sedated or anesthetized.

Setting Up the Animal in the Stereotaxic Instrument

After achieving the adequate anesthesia place the animal in the stereotaxic apparatus. Make sure that all the surgical instruments are ready and available nearby the surgical area.

First Ear Bar Placement

Fix the bars in the instrument carefully. Gently grasp the head of the animal by the sides of the instrument to direct the ear canal towards the fixed bar. Carefully maneuver the head horizontally onto the bar and position the tip of the bar behind the aural bone spur. A soft characteristic click will confirm the accurate placement, do no